

GaAs MMIC

Data Sheet

- 3-stage power amplifier for 3.5 GHz applications
- Linear Output power 31.0 dBm
- Gain of 21.0 dB typ.
- Operating voltage 7.0 V typ.
- Unconditionally stable

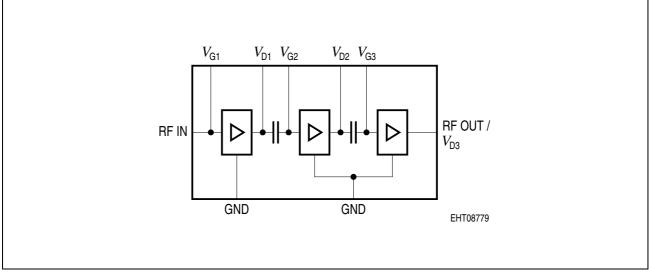
ESD: Electrostatic discharge sensitive device, observe handling precautions!

CGY 353

Туре	Marking	Ordering Code (taped)	Package
CGY 353	CGY 353	Q62702-G82	MW-16

Maximum Ratings

Parameter	Symbol	Value	Unit
Positive supply voltage	VD	8.0	V
Supply current	ID	2.0	А
Maximum input power	$P_{\text{IN}_{\text{max}}}$	17.0	dBm
Channel temperature	T _{Ch}	150	°C
Storage temperature	T _{stg}	- 55 + 150	°C
Total power dissipation ($T_{\rm S} \le 81$ °C) $T_{\rm S}$: Temperature at soldering point	P _{tot}	7.0	W
Pulse peak power dissipation duty cycle 30%, $t_{ON} = 0.5$ ms	P _{Pulse}	11.0	W


Thermal Resistance

Parameter	Symbol	Value	Unit
Channel-soldering point	$R_{ m thChS}$	t.b.d.	K/W

GaAs Components

CGY 353

Pin Configuration

Pin No.	Name	Configuration	Bias Voltage	
1	RF IN	RF input ¹⁾	_	
2	GND	GND	0 V	
3	GND	GND	0 V	
4	GND	GND	0 V	
5	GND	GND	0 V	
6	GND	GND	0 V	
7	V _{D1}	1 st RF Amp Drain Bias	pos. voltage ²⁾	
8	V _{G2}	2 nd RF Amp Gate Bias	neg. voltage ³⁾	
9	V _{G1}	1 st RF Amp Gate Bias	neg. voltage ³⁾	
10	GND	GND	0 V	
11	GND	GND	0 V	
12	RF OUT/V _{D3}	RF output/3 rd RF Amp Drain Bias	pos. voltage ²⁾	
13	RF OUT/V _{D3}	RF output/3 rd RF Amp Drain Bias	pos. voltage ²⁾	
14	RF OUT/V _{D3}	RF output/3 rd RF Amp Drain Bias	pos. voltage ²⁾	
15	V _{G3}	3rd RF Amp Gate Bias	neg. voltage ³⁾	

CGY 353

Pin Configuration (cont'd)

Pin No.	Name	Configuration	Bias Voltage
16	V _{D2}	2 nd RF Amp Drain Bias	pos. voltage ²⁾
MW-16 Heatsink Slug	GND	OWP Ground	0 V

¹⁾ The gate voltage of the 1st RF Amp is not blocked internally (see also **Figure 1**). Therefore V_{G1} must be blocked externally at RF IN.

²⁾ The positive DC voltages of V_{D1} , V_{D2} and V_{D3} are typically equal. The voltage range is typically between + 5.0 V and + 7.0 V.

³⁾ The negative DC voltages of V_{G1} , V_{G2} and V_{G3} are typically equal. The voltage range depends on the wanted drain current. A gate voltage of -2.1 V will set I_D typically to 1.2 A at $V_D = 7.0$ V. In that case I_{D1} will have about 70 mA, I_{D2} about 270 mA and I_{D3} about 900 mA.

CGY 353

Electrical Characteristics

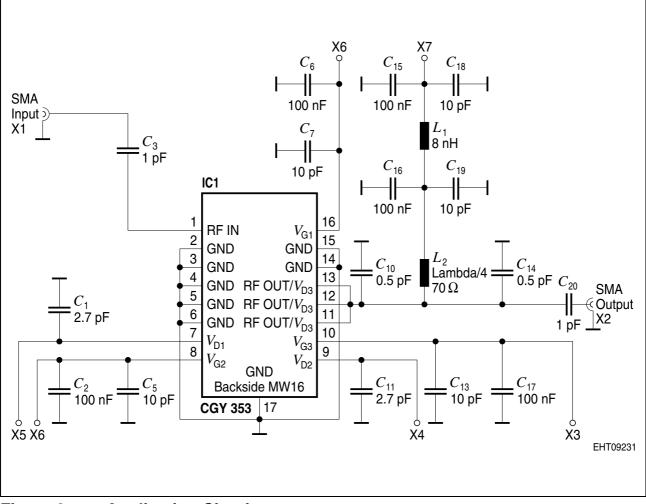
Conditions: $V_{\rm D}$ = 7.0 V, $T_{\rm A}$ = 25 °C, f = 3425 - 3450 MHz, $Z_{\rm S}$ = $Z_{\rm L}$ = 50 Ω , pulsed operation mode, duty cycle = 30%, unless otherwise specified.

Parameters	Symbol	Limit Values			Unit	Test
		min.	typ.	max.	_	Conditions
Supply current	I _{DD}	_	1.2	_	А	-
Power down current	I _{Pdown}	_	10	_	mA	-
Supply current neg. voltage	I _G	-	1	-	mA	-
Gain at nominal linear output power	G	-	21	-	dB	-
Linear Output Power	P _{OUT}	_	31	_	dBm	$P_{\rm IN}$ = 12 dBm
Saturation Output Power	P _{SAT}	-	33	-	dBm	$P_{\rm IN}$ = 14 dBm
Overall Power added Efficiency	PAE	-	15	-	%	$P_{\rm IN} = 10 \text{ dBm}$
Adjacent channel power ¹⁾	ACP	-	-	- 30	dBc	± 156 kHz beside carrier
Input return loss ²⁾	S11	10	-	-	dB	$P_{\rm IN} = 10 \rm dBm$
Output return loss	S22	8	_	_	dB	$P_{\rm IN} = 10 \rm dBm$
Noise Figure	NF	_	5	-	dB	-

¹⁾ Modulation: $\pi/4$ DQPSK with an alpha = 0.4 root raised cosine filtered Symbol rate: 256 ksymbols/s.

Transmission burst: Each burst has a 500 s nominal duration with 20 dB of raised cosine shaping of 8 s duration at the beginning and the end of the burst. A maximum of three bursts occur in each 5 ms period, but consecutive bursts are separated by a minimum interval of 1 ms.

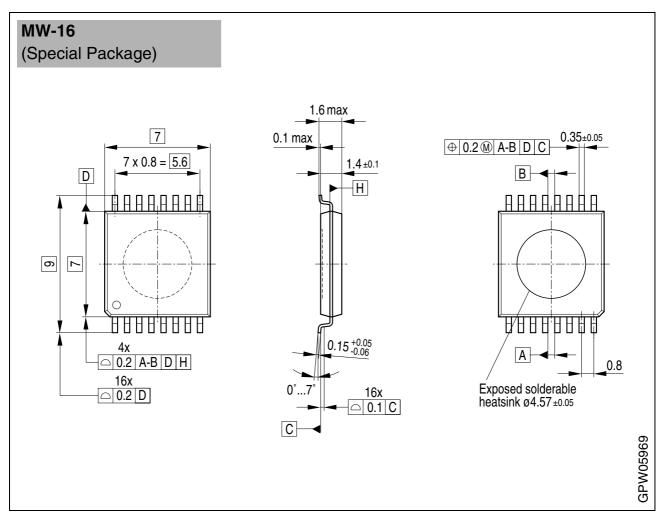
Duty cycle: 30%, 3 bursts per 5 ms frame with a minimum interval of 1 ms between bursts.


The modulation signal has a peak to mean envelope ratio of 3.1 dB.

²⁾ Values of S11 and S22 with match as realized on application board.

GaAs Components

CGY 353


Figure 2 Application Circuit

Notes:

CGY 353

Package Outlines

Sorts of Packing Package outlines for tubes, trays etc. are contained in our Data Book "Package Information". SMD = Surface Mounted Device

Data Sheet

Dimensions in mm